A hidden markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping.
نویسندگان
چکیده
Faithful reconstruction of haplotypes from diploid marker data (phasing) is important for many kinds of genetic analyses, including mapping of trait loci, prediction of genomic breeding values, and identification of signatures of selection. In human genetics, phasing most often exploits population information (linkage disequilibrium), while in animal genetics the primary source of information is familial (Mendelian segregation and linkage). We herein develop and evaluate a method that simultaneously exploits both sources of information. It builds on hidden Markov models that were initially developed to exploit population information only. We demonstrate that the approach improves the accuracy of allele phasing as well as imputation of missing genotypes. Reconstructed haplotypes are assigned to hidden states that are shown to correspond to clusters of genealogically related chromosomes. We show that these cluster states can directly be used to fine map QTL. The method is computationally effective at handling large data sets based on high-density SNP panels.
منابع مشابه
Comparing linkage disequilibrium-based methods for fine mapping quantitative trait loci.
Recently, a method for fine mapping quantitative trait loci (QTL) using linkage disequilibrium was proposed to map QTL by modeling covariance between individuals, due to identical-by-descent (IBD) QTL alleles, on the basis of the similarity of their marker haplotypes under an assumed population history. In the work presented here, the advantage of using marker haplotype information for fine map...
متن کاملTIGER: A software system for fine-mapping quantitative trait loci
The localisation of quantitative trait loci which contribute significantly to phenotype variation of economically important traits in domestic species has become an important goal in animal genomics. Several such loci have been roughly identified using linkage analyses; however the focus has now shifted towards fine mapping and pinpointing causal mutations. In the context of a cooperative natio...
متن کاملSimultaneous fine mapping of multiple closely linked quantitative trait Loci using combined linkage disequilibrium and linkage with a general pedigree.
Within a small region (e.g., <10 cM), there can be multiple quantitative trait loci (QTL) underlying phenotypes of a trait. Simultaneous fine mapping of closely linked QTL needs an efficient tool to remove confounded shade effects among QTL within such a small region. We propose a variance component method using combined linkage disequilibrium (LD) and linkage information and a reversible jump ...
متن کاملSimultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14.
A maximum-likelihood QTL mapping method that simultaneously exploits linkage and linkage disequilibrium and that is applicable in outbred half-sib pedigrees is described. The method is applied to fine map a QTL with major effect on milk fat content in a 3-cM marker interval on proximal BTA14. This proximal location is confirmed by applying a haplotype-based association method referred to as rec...
متن کاملFine mapping of complex trait genes combining pedigree and linkage disequilibrium information: a Bayesian unified framework.
We present a Bayesian method that combines linkage and linkage disequilibrium (LDL) information for quantitative trait locus (QTL) mapping. This method uses jointly all marker information (haplotypes) and all available pedigree information; i.e., it is not restricted to any specific experimental design and it is not required that phases are known. Infinitesimal genetic effects or environmental ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 184 3 شماره
صفحات -
تاریخ انتشار 2010